Stathmin Regulates Hypoxia-Inducible Factor-1α Expression through the Mammalian Target of Rapamycin Pathway in Ovarian Clear Cell Adenocarcinoma

نویسندگان

  • Kazuhiro Tamura
  • Mikihiro Yoshie
  • Eri Miyajima
  • Mika Kano
  • Eiichi Tachikawa
چکیده

Stathmin, a microtubule-destabilizing phosphoprotein, is highly expressed in ovarian cancer, but the pathophysiological significance of this protein in ovarian carcinoma cells remains poorly understood. This study reports the involvement of stathmin in the mTOR/HIF-1 α /VEGF pathway in ovarian clear cell adenocarcinoma (CCA) during hypoxia. HIF-1 α protein and VEGF mRNA levels were markedly elevated in RMG-1 cells, a CCA cell line, cultured under hypoxic conditions. Rapamycin, an inhibitor of mTOR complex 1, reduced the level of HIF-1 α and blocked phosphorylation of ribosomal protein S6 kinase 1 (S6K), a transcriptional regulator of mTOR, demonstrating that hypoxia activates mTOR/S6K/HIF-1 α signaling in CCA. Furthermore, stathmin knockdown inhibited hypoxia-induced HIF-1 α and VEGF expression and S6K phosphorylation. The silencing of stathmin expression also reduced Akt phosphorylation, a critical event in the mTOR/HIF-1 α /VEGF signaling pathway. By contrast, stathmin overexpression upregulated hypoxia-induced HIF-1 α and VEGF expression in OVCAR-3 cells, another CCA cell line. In addition, suppression of Akt activation by wortmannin, a phosphoinositide 3-kinase (PI3K) inhibitor, decreased HIF-1 α and VEGF expression. These results illustrate that regulation of HIF-1 α through the PI3K/Akt/mTOR pathway is controlled by stathmin in CCA. Our findings point to a new mechanism of stathmin regulation during ovarian cancer.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analysis of mTOR Inhibition-Involved Pathway in Ovarian Clear Cell Adenocarcinoma

This study was designed to clarify the mechanism of the mammalian target of rapamycin (mTOR)-hypoxia inducible factor-1 (HIF-1) pathway using the cultured cell strain derived from human ovarian clear cell adenocarcinoma (CCA). Everolimus (a derivative of rapamycin)-treated cells and non-treated cells did not show any difference in mTOR expression. But, phosphorylated-mTOR (p-mTOR) expression si...

متن کامل

Hypoxia-Inducible Factor-1α Regulates Chemotactic Migration of Pancreatic Ductal Adenocarcinoma Cells through Directly Transactivating the CX3CR1 Gene

CX3CR1 is an important chemokine receptor and regulates the chemotactic migration of pancreatic ductal adenocarcinoma (PDAC) cells. Up to now, its regulatory mechanism remains largely undefined. Here, we report that hypoxia upregulates the expression of CX3CR1 in pancreatic cancer cells. When hypoxia-inducible factor (HIF)-1α expression was knocked down in vitro and in vivo, the expression of C...

متن کامل

Crosstalk between PI3K and Ras pathways via protein phosphatase 2A in human ovarian clear cell carcinoma

Hypoxia-inducible factor-1 (HIF-1) is one of the most promising pharmacological targets for all types of cancer, including ovarian cancer. Ovarian clear cell carcinoma (OCCC) has poor prognosis because of its insensitivity to chemotherapy. To elucidate the characteristics of this troublesome cancer, we examined HIF-1α expression under normoxia or hypoxia in various ovarian cancer cell lines. HI...

متن کامل

Blockade of Hypoxia: The Impact on Tumor Growth in an Experimental Tumor Model

Background: Tumor microenvironment is an active factor participating in immunoregulation, thereby preventing immunosurveillance and limiting the efficacy of anticancer therapies. Hypoxia as a major characteristic of solid tumors causes the expression of Hypoxia-Inducible Factor-1α (HIF-1α). This is a transcription factor that mediates hypoxic responses of tumor cells and involves in the express...

متن کامل

Fifteen days of 3,200 m simulated hypoxia marginally regulates markers for protein synthesis and degradation in human skeletal muscle

Chronic hypoxia leads to muscle atrophy. The molecular mechanisms responsible for this phenomenon are not well defined in vivo. We sought to determine how chronic hypoxia regulates molecular markers of protein synthesis and degradation in human skeletal muscle and whether these regulations were related to the regulation of the hypoxia-inducible factor (HIF) pathway. Eight young male subjects li...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 2013  شماره 

صفحات  -

تاریخ انتشار 2013